stl Posté(e) 8 décembre 2007 Posté(e) 8 décembre 2007 Bonjour J'ai un doute sur la resolution de ce probleme : Sur un grand cube composé de 216 petits cubes (6x6x6), on peint les 6 faces puis on trie les petits cubes. Combien de cubes ont une seule face peinte? deux faces? trois faces? plus de trois faces? aucune? Il me semble que je devrais retrouver mon nombres de 216 et j'ai du mal cet am!! Si qq'un peut m'aider... Ca doit etre simple pourtant.... Merci!
Dominique Posté(e) 8 décembre 2007 Posté(e) 8 décembre 2007 Ca doit etre simple pourtant.... Je ne suis pas sûr qu'on puisse dire que c'est simple ... Nombre de petits cubes ayant trois faces peintes : 8 (autant que de sommets du grand cube) Nombre de petits cubes ayant deux faces peintes : 12 × 4 = 48 (quatre petits cubes pour chacune des arêtes du grand cube) Nombre de petits cubes ayant une face peinte : 6 × 16 = 96 (seize petits cubes pour chacune des faces du grand cube) Nombre de petits cubes n'ayant aucune face peinte : 4³ = 64 (on imagine un cube "plus petit" à l'intérieur du grand cube) Vérification : 8 + 48 + 96 + 64 = 216
stl Posté(e) 8 décembre 2007 Auteur Posté(e) 8 décembre 2007 merci bcp dominique ! en fait je me suis trompée sur le calcul d'une face peinte, j'en avais 24...je vais revoir cela de plus près! Merci et en effet, je ne pensais pas que cela était si simple que ca!!
Messages recommandés
Créer un compte ou se connecter pour commenter
Vous devez être membre afin de pouvoir déposer un commentaire
Créer un compte
Créez un compte sur notre communauté. C’est facile !
Créer un nouveau compteSe connecter
Vous avez déjà un compte ? Connectez-vous ici.
Connectez-vous maintenant