misspudik Posté(e) 1 avril 2009 Posté(e) 1 avril 2009 J'ai un petit doute si on veut connaitre l'augmentation ou diminution d'un prix faut t-il faire nv prix-ancien prix/ancien prix *100..ca qui marche mais je comprends pas pourquoi avec une autre méthode à 2 résultats différents par exemple j'ai un objet à 100 euros, et en vitrine il vaut 80 euros,je veux connaître la réduction,je fais 100x=80 x=80/100 x=0,8->1-08=0,2*100 donc il a subit une réduction de 20% maintenant si je fais l'inverse j'ai un objet à 80 euros et quelques mois plus tard il est à 100 euros,donc 80x=100 x=100/80 x=1,25, donc 0,25*100=25%
norena Posté(e) 1 avril 2009 Posté(e) 1 avril 2009 Petit formule: (Valeur finale - valeur initiale / valeur finale) x 100 Donc ici: 100-80 / 100 = 0,2 0,2 x 100 = 20% Tu vérifies: 100 x 20% =20 donc 80 euros pour la réduction
misspudik Posté(e) 1 avril 2009 Auteur Posté(e) 1 avril 2009 je dois avoir faux dans cette formulle alors? nv prix-ancien prix/ancien prix *100 je voulais savoir pourquoi l'autre formaule marche pour la hausse mais pas pour la baisse..j'ai une petite idée la dessus:augmenter un prix de tel pourcentage n'est pas la même chose que de le faire baisser du même pourcentage, mais pourquoi? car si je la fais pour l'inverse nv prixx=80 ancien prix=100 donc 80-100/80*100=25%, dc la baisse est de 25%
schwa Posté(e) 1 avril 2009 Posté(e) 1 avril 2009 je dois avoir faux dans cette formulle alors?nv prix-ancien prix/ancien prix *100 je voulais savoir pourquoi l'autre formaule marche pour la hausse mais pas pour la baisse..j'ai une petite idée la dessus:augmenter un prix de tel pourcentage n'est pas la même chose que de le faire baisser du même pourcentage, mais pourquoi? car si je la fais pour l'inverse nv prixx=80 ancien prix=100 donc 80-100/80*100=25%, dc la baisse est de 25% non, là tu as calculé la hausse avec cette formule. en tout cas je ne sais pas quelle est la vraie formule. moi, j'ai toujours posé l'équation. par exemple, tu as 80 euros et avant ça coûtait 100 euros. Tu as donc 100 -x% de 100=80 soit 100 - (X/100)*100=80 soit (1-x/100)*100=80 (j'ai mis 100 en facteur) d'où 1-x/100=80/100=0,8 donc x/100=1-0,8=0,2 donc x=20 la baisse a été de 20% dans l'autre sens, si tu as 80 euros et après une hausse tu obtiens 100, tu as donc 80 + x% de 80=100 soit 80(1+x/100)=100 d'où 1+x/100=100/80=1,25 donc x/100=1,25-1=0,25 donc x=25 la hausse a été de 25% donc vous avez bien donné toutes les deux les bonnes formules (il faut diviser par l'ancien prix pour connaître la hausse, et par le nv prix pour connaître la baisse apparemment !), mais pour être sûre de ne pas me tromper, je préfère passer par l'équation, car les formules se ressemblent, et j'aurais peur de confondre personnellement !
dino974 Posté(e) 1 avril 2009 Posté(e) 1 avril 2009 pour la hausse , je me dis : quelle est l'augmentation par rapport au prix de départ, donc cela se traduit par : prix final - prix initial / prix initial si prix initial est de 80 et prix final est de 100 => 100-80 / 80 pour la baisse, idem: quelle la baisse par rapport au prix de départ, donc cela se traduit par : prix final - prix initial / prix initial Si prix initial de 100 , prix final est de 80 => 80 - 100/100
Charivari Posté(e) 1 avril 2009 Posté(e) 1 avril 2009 C'est normal : Passer de 100 à 80, c'est une remise de 20% du prix initial (20, c'est un cinquième de 100, soit 20% de 100) Passer de 80 à 100, c'est une hausse de 25% du prix initial (20, c'est un quart de 80, soit 25%) Il faut se méfier par exemple des exercices où on demande de calculer un prix avant une hausse de 20%. Le calcul n'est pas le même qui si on veut calculer une remise de 20% sur ce prix. Exemple : Une lampe coûte 100 Eur. Elle subit une hausse de 20% => elle coûte maintenant 120 Eur (120 = 100 + 20% de 100) soit 100 x 1,20 Pour retrouver le prix initial de la lampe, à partir de 120, il faut faire 120 / 1,20 = 100. Et surtout pas 120 x 0,80 ! En revanche : La lampe coute 100 Eur. Elle reçoit une remise de 20% => Elle coûte maintenant 80 Eur (80 = 100 - 20% de 100 = 100 x 0,8) Pour retrouver le prix initial de la lampe avant la réduction de 20% on fait 80/0,8 = 100. Et surtout pas 80 x 1,20 ! Moralité : annuler une hausse de 20%, ce n'est pas équivalent à pratiquer une remise de 20%.
Dominique Posté(e) 1 avril 2009 Posté(e) 1 avril 2009 En complément aux réponses données, voici quelques rappels : 1°) Si des prix augmentent de t%, les nouveaux prix sont proportionnels aux anciens et le coefficient de proportionnalité est égal à 1 + t/100 Exemple : un objet qui coûtait 32 € va coûter, après augmentation de 25 %, 32 × (1 + 25/100) € soit 32 × 1,25 € soit 40 €. (attention : on a multiplié l'ancien prix par 1,25 pour trouver directement le nouveau prix mais si on avait voulu calculer l'augmentation on aurait multiplié l'ancien prix par 0,25) 2°) Si des prix diminuent de t%, les nouveaux prix sont proportionnels aux anciens et le coefficient de proportionnalité est égal à 1 - t/100 Exemple : un objet qui coûtait 32 € va coûter, après diminution de 25 %, 32 × (1 - 25/100) € soit 32 × 0,75 € soit 24 €. (attention : on a multiplié l'ancien prix par 0,75 pour trouver le nouveau prix mais si on veut calculer seulement l'augmentation on multiplie l'ancien prix par 0,25) 3°) Si une quantité est multiplié par c avec c > 1, cette quantité augmente de (c - 1) × 100% Exemple : si une quantité est multipliée par 1,32, cette quantité augmente de (1,32 - 1) × 100% soit 32 % 4°) Si une quantité est multiplié par c avec c < 1, cette quantité diminue de (1 - c) × 100% Exemple : si une quantité est multiplié par 0,63, cette quantité diminue de (1 - 0,63) × 100% soit 37 % 5°) Calcul d'un pourcentage de hausse (exemple) : Un prix passe de 130€ à 133,38 €. Première méthode : 133,38/130 = 1,026 donc le prix est multiplié par 1,026 donc le prix augmente de (1,026 - 1) × 100 % donc le prix augmente de 2,6 %. Deuxième méthode : Pourcentage d'augmentation : (133,38 - 130)/130 = 3,38/130 = 0,026 = 2,6 % ou Pourcentage d'augmentation : [(133,38 - 130)/130] × 100 % = 0,026 × 100 % = 2,6 % 6°) Calcul d'un pourcentage de diminution (exemple) : Un prix passe de 133,38€ à 130 €. Un prix passe de 133,8 € à 130€ (énoncé rectifié à 18h06) Première méthode : 130/133,8 vaut environ 0,972 donc le prix est multiplié par environ 0,972 donc le prix diminue d'environ (1 - 0,972) x 100 % donc d'environ 2,8 %. Deuxième méthode : Pourcentage de diminution : (133,8 - 130)/133,8 soit environ 0,028 soit environ 2,8 % ou Pourcentage de diminution : [(133,8 - 130)/133,8]×100 % soit environ 0,028 x 100% soit environ 2,8 % Autre exemple (j'ajoute ce deuxième exemple à 18h06 pour ceux qui avaient essayé de faire le calcul avec 133,38) : Un prix passe de 133,38€ à 130 €. Première méthode : 130/133,38 vaut environ 0,975 donc le prix est multiplié par environ 0,975 donc le prix diminue d'environ (1 - 0,975) x 100 % donc d'environ 2,5 %. Deuxième méthode : Pourcentage de diminution : (133,38 - 130)/133,38 soit environ 0,025 soit environ 2,5 % ou Pourcentage de diminution : [(133,8 - 130)/133,8]×100 % soit environ 0,025 x 100% soit environ 2,5 %
mamanstef Posté(e) 1 avril 2009 Posté(e) 1 avril 2009 attention il y a une erreur dans l'exemple de Dominique pour le calcul du pourcentage de diminution ! je veins de me rpendre la tête car je retrouvais pas son résultat ! ! ! !
cinday82 Posté(e) 1 avril 2009 Posté(e) 1 avril 2009 Oui en effet il a fait: 133,38-130 /133,38 * 100 Or c'est 130 - 133,38: 130 * 100
Dominique Posté(e) 1 avril 2009 Posté(e) 1 avril 2009 J'ai effectivement fait une erreur "d'étourderie" en donnant un énoncé dans lequel figurait le nombre 133,38 et en faisant tous les calculs avec le nombre 133,8 et j'en suis désolé mais attention les formules que j'ai utilisées sont exactes. Pour calculer un pourcentage de diminution, la formule à utiliser est bien : (Diminution / Ancienne valeur) × 100 % Si un prix passe de 133,38 € à 130 € la diminution est égale à (133,38 - 130) € et le pourcentage de diminution est bien égal à [(133,38 - 130)/133,38] × 100 %. Remarque : on peut aussi calculer (Nouvelle valeur - Ancienne valeur)/Ancienne valeur si on veut utiliser la même formule pour augmentations et diminutions ; ce qu'on trouve alors c'est ce qu'on peut appeler un "pourcentage de variation" : on trouvera un résultat positif dans le cas d'une augmentation et un résultat négatif dans le cas d'une diminution. Ceci dit, c'est toujours l'ancienne valeur qui est au dénominateur et donc, dans le cas de cas de mon exemple, c'est 133,38 qui figure au dénominateur.
Dominique Posté(e) 1 avril 2009 Posté(e) 1 avril 2009 Oui en effet il a fait: 133,38-130 /133,38 * 100Or c'est 130 - 133,38: 130 * 100 Attention l'erreur n'est pas là. Si un prix passe de 133,38 € à 130 € , pour trouver le pourcentage de diminution il faut bien calculer [(133,38 - 130)/133,38]×100 % ... et si un prix passe de 133,8 € à 130 €, pour trouver le pourcentage de diminution il faut bien calculer [(133,8 - 130)/133,8]×100 %
Dominique Posté(e) 1 avril 2009 Posté(e) 1 avril 2009 attention il y a une erreur dans l'exemple de Dominique pour le calcul du pourcentage de diminution ! je veins de me rpendre la tête car je retrouvais pas son résultat ! ! ! ! Je suis vraiment désolé pour "la prise de tête". Comme je l'explique dans un précédent message, c'est à la suite d'une erreur d'inattention que le 133,38 € de l'énoncé s'était transformé en un 133,8 € dans les calculs ...
Messages recommandés
Créer un compte ou se connecter pour commenter
Vous devez être membre afin de pouvoir déposer un commentaire
Créer un compte
Créez un compte sur notre communauté. C’est facile !
Créer un nouveau compteSe connecter
Vous avez déjà un compte ? Connectez-vous ici.
Connectez-vous maintenant