Anwamanë Posté(e) 23 août 2011 Posté(e) 23 août 2011 Maître de conférence de psychologie cognitive à l'Université de Cergy-Pontoise (IUFM de Versailles, Rémi Brissiaud porte un regard critique sur la méthode de l'apprentissage du comptage à la maternelle et estime qu'elle conduit à une dégradation des performances des élèves en calcul. Dans un entretien dont nous mettons le texte en ligne, Rémi Brissiaud porte un regard critique sur les documents d'aide à l'évaluation des performances des élèves de grande section en calcul. Pour lui, ce document basé sur le principe du comptage énoncé dans les années 80 par Rochel Gelman ignore les nombreuses réserves et critiques, faites à propos de certaines des règles définies par la psychologue américaine.« Enseigner le comptage en insistant sur la règle de correspondance 1 mot - 1 élément, cʼest enseigner un « comptage-numérotage » et cela éloigne les élèves les plus fragiles dʼune authentique compréhension des nombres » dit-il notamment. I l oppose l'apprentissage du « comptage mécanique » à une pédagogie construite sur l'apprentissage de la langue avec la compréhension des nombres parce que, explique-t-il, « sans compréhension des 3 - 4 premiers nombres, le comptage dʼun enfant reste mécanique ». Citant des études de la DEPP, Rémi Brissiaud note que depuis l'introduction de la méthode anglo-saxonne de Rochel Gelman le niveau des performances des élèves de CM2 aux évaluations a baissé pour ce qui concerne le calcul. Le chercheur préconise d'enseigner le comptage « plus tardivement » et d'insister « non pas sur la correspondance 1 mot - 1 élément, mais sur la correspondance entre chaque mot et lʼensemble des éléments déjà comptés ». Pour lui, l'évaluation CM2 est inadaptée et ne peut que contribuer à un accroissement de l'échec scolaire en mathématiques. Le texte de l'entretien : LʼÉVALUATION, LE COMPTAGE MÉCANIQUE ET LA DÉGRADATION DES PERFORMANCES EN CALCUL Source : http://www.snuipp.fr/Le-comptage-mecanique-en-GS-un
vieuxmatheux Posté(e) 23 août 2011 Posté(e) 23 août 2011 Comme Rémi Brissiaud le signale lui même (je ne sais plus si c'est dans l'article présenté ici ou dans un autre) ce genre de situation pose des problèmes plus que sérieux pour le CRPE : Quand le candidat a connaissance de données issues de la recherches qui mettent en cause la pertinence des textes officiels, que doit il faire ? Doit-il faire semblant de ne pas avoir ces connaissances ? Sans doute un discours du type " la capacité à compter est nécessaire (puisqu'elle est dans les programmes !) mais pas suffisante, et doit être complétée par d'autres activités portant sur la signification des nombres (qui pour l'essentiel désignent des quantités ce qui n'est pas mis en évidence par le comptage)" est-il plus raisonnable pour le candidat qu'une mise en cause frontale des programmes, mais c'est très édulcoré, pas très satisfaisant pour l'esprit.
Anwamanë Posté(e) 24 août 2011 Auteur Posté(e) 24 août 2011 Comme Rémi Brissiaud le signale lui même (je ne sais plus si c'est dans l'article présenté ici ou dans un autre) ce genre de situation pose des problèmes plus que sérieux pour le CRPE : Quand le candidat a connaissance de données issues de la recherches qui mettent en cause la pertinence des textes officiels, que doit il faire ? Doit-il faire semblant de ne pas avoir ces connaissances ? Sans doute un discours du type " la capacité à compter est nécessaire (puisqu'elle est dans les programmes !) mais pas suffisante, et doit être complétée par d'autres activités portant sur la signification des nombres (qui pour l'essentiel désignent des quantités ce qui n'est pas mis en évidence par le comptage)" est-il plus raisonnable pour le candidat qu'une mise en cause frontale des programmes, mais c'est très édulcoré, pas très satisfaisant pour l'esprit. Je pense que si nos propos sont étayés, que l'on est capable de discuter dessus...pourquoi pas ? Personnellement mes connaissances mathématiques ne sont pas assez étoffées pour me permettre d'en discuter mais en parler et montrer que l'on s'intéresse à la recherche etc....fait preuve d'ouverture d'esprit non ?
Ekole Posté(e) 27 août 2011 Posté(e) 27 août 2011 Bonjour, La dixième compétence du PE, (BO n°29 du 22 juillet 2010) répond en partie à ta question...
Lydia94 Posté(e) 30 septembre 2016 Posté(e) 30 septembre 2016 Bonjour je passe le CRPE en 2017, je suis sur la dictatique des math cependant je bloque sur la méthode Gelman Est elle bonne ou non ? Merci d'avance. Lydia.
vieuxmatheux Posté(e) 30 septembre 2016 Posté(e) 30 septembre 2016 Il est étonnant que tu poses cette question dans ce sujet, en effet le texte de Rémi Brissiaud auquel renvoie un lien dans le premier message explicite parfaitement les dangers qu'il y a à privilégier le dénombrement par comptage de un en un (ce qu'il appelle comptage-numérotage) comme le décrit Gelman. On peut trouver un autre article du même auteur, un peu plus développé, ici : http://www.cafepedagogique.net/lexpresso/Pages/2012/11/12112012Article634882967527254607.aspx Rien n'oblige évidemment à être d'accord avec Rémi Brissiaud, mais la lecture de son petit livre "Premiers pas vers les maths, Les chemins de la réussite à l'école maternelle" t'apportera de nombreux éléments très argumentés sur cette question. De plus, dans le cadre du CRPE, les nouveaux programmes tiennent plus compte de l'approche de Brissiaud, et notamment de l'importance à accorder aux décompositions des premiers nombres que ne le faisaient les précédents, le problème que je signalais il y a quelques années dans ce sujet de tension entre les connaissances sur l'état de la recherche et les préconisations des programmes n'existe donc plus sur cette question.
Lydia94 Posté(e) 30 septembre 2016 Posté(e) 30 septembre 2016 Merci pour ta réponse cela m'aide beaucoup Je débute donc je ne comprend pas tous 😊😊
Messages recommandés
Créer un compte ou se connecter pour commenter
Vous devez être membre afin de pouvoir déposer un commentaire
Créer un compte
Créez un compte sur notre communauté. C’est facile !
Créer un nouveau compteSe connecter
Vous avez déjà un compte ? Connectez-vous ici.
Connectez-vous maintenant