priane Posté(e) 12 juillet 2004 Posté(e) 12 juillet 2004 je vous propose un exo de math issu du concours d'entrée en iufm: L'écriture 5791428036 utilise tous les chiffres de la numération décimale. en gommant 4 chiffres sans toucher à l'ordre de ceux qui restent, on peut créer deux cent dix nombres différents. Quelle est la somme du plus petit et du plus grand de ces nombres? je vous avoue que je n'ai pas compris l'"énoncé par contre j'ai le résultat. si vous trouvez, pourriez vous me mettre les explications en ligne. merci a+ je vous laisse mijoter et je vous mets le résultat.
PHL Posté(e) 12 juillet 2004 Posté(e) 12 juillet 2004 (modifié) La somme serait : 1 076 072 avec les chiffres 948 036 (le plus grand nbre) et 128 036 (le plus petit). Comme parfois, c'est plus un pb de compréhension (lecture) qu'un pb de maths ! Pour les explications : elles sont assez détaillées dans le message suivant. Modifié 13 juillet 2004 par PHL
priane Posté(e) 13 juillet 2004 Auteur Posté(e) 13 juillet 2004 c'est exact!!!! peux tu m'expliquer comment tu as fait? ce serait sympa. merci
Gaelle06 Posté(e) 13 juillet 2004 Posté(e) 13 juillet 2004 Salut!! En fait, en gommant 4 chiffres, dans tous les cas tu obtiens un nombre à 6 chiffres. Il faut trouver quel est le plus grand nombre que tu peux obtenir en gommant 4 chiffres: tout d'abord, le plus grand possible commencerait par un 9, donc tu barres le 5 et le 7; ensuite si tu barres le 1, tu prends comme second chiffre le 4 qui est plus grand (tu ne peux pas faire plus grand), puis tu barres le 2 (dernier que tu peux barrer) et tu obtiens donc le nombre 948036 qui est le plus grand que tu peux former de cette façon. Ensuite, tu dois faire pareil pour trouver le plus petit nombre possible: il faudrait qu'il commence par le chiffre le plus petit possible. Tu barres donc le 5, le 7, le 9 et tu gardes le 1. Ensuite tu barres le 4 et tu gardes le reste puisque tu as barré 4 chiffres. Tu obtiens 128036. 128036 + 948036 = 1076072 J'espère que tu as compris, ce n'est pas facile à expliquer! Bon courage, Gaëlle
priane Posté(e) 13 juillet 2004 Auteur Posté(e) 13 juillet 2004 merci beaucoup! je viens de m'apercevoir que je n'avais pas compris l'énoncé, je croyais qu'avec les nombres qui restaient on pouvaient écrire 210 nombres différents. n'importe quoi! merci encore priane
karen Posté(e) 13 juillet 2004 Posté(e) 13 juillet 2004 dans le style prise de tete je propose : quelle est la surface totale d'un cone de révolution dont le rayon de la base vaut 5/ racine Pi et la hauteur 3/racine Pi 4 solutions : 55 cm² , 25cm², 25/racine Pi cm², 55/racine Pi cm² je vous aide ; la formule de l'aire : rayon * Pi * a (génératrice = simmet à point du disque) franchement je trouve pas la solution cryin , pourtant ça n'a pas l'air compliqué
PHL Posté(e) 13 juillet 2004 Posté(e) 13 juillet 2004 A Karen : Il n'y aurait pas une petite erreur dans ton sujet : Si le rayon est 4/(racine pi) alors on trouve l'un des 4 résultats que tu proposes ! Je te laisses chercher jusqu'à demain ... A moins qu'une autre fana ne fasse l'exo avant !
karen Posté(e) 13 juillet 2004 Posté(e) 13 juillet 2004 oui justement je suis persuadée qu'il y a une erreur c'est pour ça que je vous le propose , j'ai cherhcé bien 20 mns en essayant totutes les solutions mais pas moyen ! en fait il s'agit d'un item de qcm propsoé l'an dernier les chiffres sont bien 5 /racine pi et 3/racine pi les 4 solutions me laissent perplexes , sans meme regarder les solutions quel devrait etre le résultat ? j'ai trouvé un truc avec une racine 34
karen Posté(e) 13 juillet 2004 Posté(e) 13 juillet 2004 vu les 25 soit 3² + 4² je me doutais qu'il y avait un 4 quelque part mais quand meem c'est u nqcm pour les impots , une bourde pareille .... malgré le 4 comme rayon je ne trouve pas la solution parmi les 4 propositions j'ai trouvé 20 cm²
PHL Posté(e) 14 juillet 2004 Posté(e) 14 juillet 2004 Solution : 1) calculer la hauteur de l'arête (a). C'est la diagonale d'un tr. rectangle dont les 2 autres cotés sont le rayon et la hauteur du cône. Donc aplliquer le th. de pythagore. 2) reste alors à appliquer la (ta) formule de surface du cône PI x R x a 3) Puis à y ajouter la surface de la base du cône : PI x R x R Qui veut refaire les calculs ! (excuse : pas de papier sous la main) avec les hypothèses d'origine ! J'avais répondu un peu vite, négligé la surface du cercle et mélangé hyphothses corrigées et non corrigées !!!
karen Posté(e) 14 juillet 2004 Posté(e) 14 juillet 2004 donc surface totale = surface latterale + surface de base en prenant 4 comme rayon je trouve 20 + 4 = 24 mais comme les solutions sont 55 cm² 25 cm² 25/racine pi 55/racine Pi 25 cm² s'en rapproche le plus donc si le rayon était bien 5/racine pi alors peut etre que ça serait 25 la solution j'ai vraiment du mal avec ce petit exercice qui en théorie est résolu mentalment car c'est un qcm sans calculatrice tu trouves quoi PHL ?
PHL Posté(e) 15 juillet 2004 Posté(e) 15 juillet 2004 Allez je me force et je refais les calculs en ligne ... 1) calculer la hauteur de l'arête (a). a²=(25/pi + 9/pi)= 34/pi a= racine(34)/racine de pi 2) reste alors à appliquer la (ta) formule de surface du cône PI x R x a Aire latérale du cone = pi x 5/(racine pi) x racine de 34 /(racine pi) = 5 x racine(34) cm². 3) Surface de la base du cône : PI x R x R pi x 5/racine(pi) x 5/racine(pi) = 25 cm² Surface totale : 25 + 5 x racine(34) = 25 + 29,15 = 54,15 cm² Pour un calcul à faire sans calculette c'est assez pénible ! il fut arrondir racine(34) =environ racine(36) pour trouver 55 ! DONC ne pas tenir mon résultat pour juste et vérifier SVP ! P.S. : avec rayon = 4/racine(pi) on trouverait 16 + 20 = 36 cm² (soit loin des 4 solutions proposées).
Messages recommandés
Créer un compte ou se connecter pour commenter
Vous devez être membre afin de pouvoir déposer un commentaire
Créer un compte
Créez un compte sur notre communauté. C’est facile !
Créer un nouveau compteSe connecter
Vous avez déjà un compte ? Connectez-vous ici.
Connectez-vous maintenant