Ekole Posté(e) 30 janvier 2015 Posté(e) 30 janvier 2015 Je suis d'accord avec toi, je prends soin de donner le un/1 de référence à chaque fois. Quand au rectangle coupé en quatre par ses diagonales, la question de l'égalité des aires des parts (triangulaires?) malgré les surfaces qui ne sont pas superposables est une vraie question, soulevée en son temps par.. les évaluations nationales!
Japet Posté(e) 30 janvier 2015 Posté(e) 30 janvier 2015 En ce qui concerne RB, je n'ai pas regardé de près ses dernières éditions à propos des fractions, mais dans les précédentes je trouve que l'idée de "division-fraction" était particulièrement difficile et pas très judicieuse Vieuxmatheux et Ekole, j'essaye de suivre votre échange fort intéressant. Qui sont Pato et Fino, qui est RB? Quelle était cette idée de division-fraction non judicieuse?
Ekole Posté(e) 30 janvier 2015 Posté(e) 30 janvier 2015 En ce qui concerne RB, je n'ai pas regardé de près ses dernières éditions à propos des fractions, mais dans les précédentes je trouve que l'idée de "division-fraction" était particulièrement difficile et pas très judicieuse Vieuxmatheux et Ekole, j'essaye de suivre votre échange fort intéressant. Qui sont Pato et Fino, qui est RB? Quelle était cette idée de division-fraction non judicieuse? Pato (pataud?) et Fino (finaud?) sont les pizzaioli partageurs de pizzas de J'apprends les maths, de Rémi Brissiaud.
vieuxmatheux Posté(e) 30 janvier 2015 Posté(e) 30 janvier 2015 "Je suis d'accord avec toi, je prends soin de donner le un/1 de référence à chaque fois." dis tu, Ekole, c'est donc bien que tu comptes des fractions de quelque chose… si les fractions que tu utilises étaient seulement des nombres il n'y aurait pas besoin de référence.
bab33 Posté(e) 30 janvier 2015 Posté(e) 30 janvier 2015 Moi j'aime bien travailler sur : J'ai un bocal de 246 billes. J'en ai donné les 2/3 à mon frère . Combien lui en ai-je donné ? Puis plus dur. Sans poser la première question je pose : Combien m'en reste t-il ? Puis je varie avec un ruban de 12 cm dont je prends les 3/4 Combien est ce que je prends de cm ..... Ca permet une vraie gymnastique de tête !!!
Japet Posté(e) 30 janvier 2015 Posté(e) 30 janvier 2015 En ce qui concerne RB, je n'ai pas regardé de près ses dernières éditions à propos des fractions, mais dans les précédentes je trouve que l'idée de "division-fraction" était particulièrement difficile et pas très judicieuse Vieuxmatheux et Ekole, j'essaye de suivre votre échange fort intéressant. Qui sont Pato et Fino, qui est RB? Quelle était cette idée de division-fraction non judicieuse? Pato (pataud?) et Fino (finaud?) sont les pizzaioli partageurs de pizzas de J'apprends les maths, de Rémi Brissiaud. ah d'accord, merci
Ekole Posté(e) 30 janvier 2015 Posté(e) 30 janvier 2015 "Je suis d'accord avec toi, je prends soin de donner le un/1 de référence à chaque fois." dis tu, Ekole, c'est donc bien que tu comptes des fractions de quelque chose… si les fractions que tu utilises étaient seulement des nombres il n'y aurait pas besoin de référence. Je comprends, mais quand tu dis "22 est un nombre pair" tu n'as rien compté, et tu ne précises pas que tu as 22 uns ou unités. Quand tu dis "3/4 est inférieur à 1" tu parles du nombre 3/4.
vieuxmatheux Posté(e) 31 janvier 2015 Posté(e) 31 janvier 2015 Oui, " 3/4 et inférieur à 1 " fait référence seulement au nombre, mais de mon point de vue, c'est plutôt l'exception à l'école élémentaire, et d'ailleurs pour en convaincre les élèves, on va s'appuyer sur des exemples qui, eux, ne sont pas des nombres "purs" c'est parce que 3/4 d'une bande c'est moins qu'une bande etc, qu'on dit que 3/4 est plus petit que 1.
bab33 Posté(e) 31 janvier 2015 Posté(e) 31 janvier 2015 Surtout 4/4=1 et comme j en prends moins que 4 j en prends moins que 1 Moi je veux qu ils sachent par cœur Le nombre du bas c est en combien de parts est découpée l unité Le nombre du haut le nombre de part que je prends
Ekole Posté(e) 31 janvier 2015 Posté(e) 31 janvier 2015 Oui, " 3/4 et inférieur à 1 " fait référence seulement au nombre, mais de mon point de vue, c'est plutôt l'exception à l'école élémentaire, et d'ailleurs pour en convaincre les élèves, on va s'appuyer sur des exemples qui, eux, ne sont pas des nombres "purs" c'est parce que 3/4 d'une bande c'est moins qu'une bande etc, qu'on dit que 3/4 est plus petit que 1. Je préfère comparer 3/4 à 4/4, on compare des quarts, et l'affaire de la comparaison du numérateur et du dénominateur dans la comparaison d'une fraction à 1 prend du sens et ne fait pas 'tour de magie' ... Idem pour l'écriture des fractions sour forme de somme d'entier et de fraction <1, puis des nombres décimaux.
bab33 Posté(e) 31 janvier 2015 Posté(e) 31 janvier 2015 Les élèves comprennent mieux le nombre 3/4 et ce qu'il représente plutôt que 3/4 de quelque chose Quand j'introduis les fractions je commence par ce que signifie le nombre du haut puis celui du bas. Donc découle facilement la fraction plus petite que 1 et plus grande car quand en haut et en bas c'est le même nombre on dit qu'on prend toute l'unité soit 1. Je dis aussi rapidement que le signe de la fraction signifie diviser et que 4/4 ça fait 1. Surtout en CM2 Le 3/4 de 100 euros je trouve que c'est plus complexe pour eux à comprendre.
vieuxmatheux Posté(e) 1 février 2015 Posté(e) 1 février 2015 Je veux bien bab 33, mais quand tu commences et expliques ce que signifient chacun des deux nombres à partager, j'imagine que tu pars bien d'exemples… dans 4/5 le 5 indique qu'on fait 5 parts égales… mais si on ne dit pas ce qu'on partage dans les premiers exemples, ça me semble difficile. Par ailleurs je crois préférable d'expliquer d'abord le sens du nombre du bas car si on ne sait pas ce qu'il signifie, le nombre du haut n'a pas de sens… on compte 4 quoi ? Quand à toi Ekole, je suis finalement assez d'accord, je me suis laissé emporté par la rubrique "problème" de ce sujet qui me semble imposer qu'on ne travaille pas que sur les nombres. Je reste cependant persuadé que souvent (ça ne te concerne probablement pas) on fait trop vite le passage aux nombres. D'ailleurs, et c'est un peu paradoxal, si ta comparaison de 3/4 à 4/4 fonctionne très bien avec les élèves, j'en suis d'accord, c'est surtout parce qu'en réalité on n'y compare pas vraiment les fractions comme nombre, on interprète celles-ci comme des entiers qui comptent des choses : 3 quarts c'est moins que 4 quarts pour la même raison que 3 chats c'est moins que 4 chats… on en revient au sens des deux nombres composant la fraction, numérateur comme numérus, le nombre et dénominateur comme nomen, le nom.
Messages recommandés
Créer un compte ou se connecter pour commenter
Vous devez être membre afin de pouvoir déposer un commentaire
Créer un compte
Créez un compte sur notre communauté. C’est facile !
Créer un nouveau compteSe connecter
Vous avez déjà un compte ? Connectez-vous ici.
Connectez-vous maintenant