Aller au contenu

Messages recommandés

Posté(e)

Bonjour, je ne comprends pas la correction de la situation 4 question 4. Le 125 il est là parce que c'est que avec ce nombre que l'on obtient 1000, c'est parce qu'on essaie de garder le nombre sous forme décimal mais du coup c'est nous qui faisons qu'il reste décimal, et ça ne répond pas à la question s'il est toujours décimal, je suis un peu perdue... et pour la question 3 , dans le corrigé primaths, il n'y a pas la présentation de l'opération , il s'agit normalement de l'opération en potence? 137.6/8

Merci pour votre aide, les maths ne sont pas forcément mon point fort...mais je persiste...

Emilie

Posté(e)

Bonjour, je ne comprends pas la correction de la situation 4 question 4. Le 125 il est là parce que c'est que avec ce nombre que l'on obtient 1000, c'est parce qu'on essaie de garder le nombre sous forme décimal mais du coup c'est nous qui faisons qu'il reste décimal, et ça ne répond pas à la question s'il est toujours décimal, je suis un peu perdue... et pour la question 3 , dans le corrigé primaths, il n'y a pas la présentation de l'opération , il s'agit normalement de l'opération en potence? 137.6/8

Merci pour votre aide, les maths ne sont pas forcément mon point fort...mais je persiste...

Emilie

ouille ! je n'ai rien compris...

quel est l'énoncé de l'exercice et aussi quel est ton problème ?

sinon oui 125 est un nombre décimal.

Posté(e)

Bonsoir,

Est-ce que tu as regardé sur le site de Vieuxmatheux, primaths.fr; il y a la correction.

Posté(e)

oui justement c'est cette correction que je ne comprends pas...

Posté(e)

Bonsoir,

Un nombre décimal est un nombre que tu peux écrire sous la forme d'une fraction décimale (dénominateur = puissance de 10)

8 est-il diviseur d'une puissance de 10? Oui, de 1000 entres autres.

D'où l'utilisation de 125/1000.

Du coup, diviser par 8 revient à multiplier par 125 et à diviser par 1000,

Un décimal multiplié par un entier (125) donne un décimal, qui divisé par 1000 donne un décimal.

Pour le calcul du quotient de 137,6 par 8, oui de calcul peut être posé avec la potence. VM a peut-être oublié de mettre le calcul posé...

Si Vieuxmatheux passe par là il sera plus précis!

Posté(e)

Je pense tout d'abord que la deuxième version donnée dans le corrigé ne te pose pas de problème :

pour diviser un décimal par 8 on peut le multiplier par 125, ce qui donne un décimal, puis le diviser par 1000 ce qui donne encore un décimal.

Pour l'autre méthode (je me suis laissé aller à une version un peu technique, ce que j'évite le plus souvent, mais bon c'était le dernier exercice du troisième sujet, je commençais à en avoir un peu marre…) elle s'appuie sur plusieurs idées :

  • Un nombre est décimal s'il peut s'écrire sous forme d'une fraction dont le dénominateur est 10, 100, 1000 ou une autre puissance de 10.

Par exemple 7/35 peut s'écrire sous la forme 1/5 donc sous la forme 2/10, donc 7/35 est décimal.

​La méthode consiste donc à transformer l'écriture du nombre (son écriture seulement, pas la valeur du nombre) jusqu'à obtenir au dénominateur une puissance de 10.

Pour vérifier cette solution, il faut donc vérifier chaque égalité et s'assurer à chaque fois que le nombre écrit à gauche du signe "=" et celui écrit à droite sont vraiment égaux. Bien entendu, vérifier une solution et la trouver soi-même, ce n'est pas du tout la même chose.

  • On ne change pas la valeur d'une fraction en multipliant (ou divisant) son numérateur et son dénominateur par le même nombre.

​Cette idée est essentielle, elle permet de ne s'intéresser dans un premier temps qu'au dénominateur et d'essayer de le transformer par des multiplications en une puissance de 10… si on trouve une idée, on fait la même multiplication au numérateur et on n'en parle plus.

  • 8x125=1000 ou 8=2x2x2 et 2x5=10

Ce sont des considérations de ce genre sur les nombres (connaissances des tables, des nombres particuliers que sont 100, 1000, 50, 75, 60…) qui bien souvent mettent sur la voie d'une solution : ici on choisit de multiplier par 125 parce qu'on sait qu'on va obtenir 1000.

  • 10a signifie 10x10x10x……x10. Si on compte les "10" qui se multiplient, on en trouve "a"

​On déduit de cette connaissance que 10aX 1000 signifie 10x10x10x……x10 X 10x10x10

Si on compte les "10" qui se multiplient, on en trouve trois de plus que tout à l'heure, c'est à dire "a+3" d'où l'écriture 10a+3

Cet exercice est assez révélateur des difficultés du CRPE : il n'y a pas de connaissances très techniques et très compliquées à avoir (par exemple des formules sur les puissances), mais il faut être capable de mobiliser et de combiner plusieurs connaissances élémentaires, ce qui est plus facile à dire qu'à faire.

Cet exercice peut aussi être pour toi l'occasion de méditer et retenir un des 4 points que j'ai mis en évidence par des pastilles si nécessaire.

Posté(e)

Merci beaucoup pour cette explication bien détaillée . Je vous souhaite une bonne année!

Posté(e)

Bonsoir,

Un nombre décimal est un nombre que tu peux écrire sous la forme d'une fraction décimale (dénominateur = puissance de 10)

8 est-il diviseur d'une puissance de 10? Oui, de 1000 entres autres.

D'où l'utilisation de 125/1000.

Du coup, diviser par 8 revient à multiplier par 125 et à diviser par 1000,

Un décimal multiplié par un entier (125) donne un décimal, qui divisé par 1000 donne un décimal.

Pour le calcul du quotient de 137,6 par 8, oui de calcul peut être posé avec la potence. VM a peut-être oublié de mettre le calcul posé...

Si Vieuxmatheux passe par là il sera plus précis!

Merci également pour ton explication je te souhaite aussi une bonne année

Créer un compte ou se connecter pour commenter

Vous devez être membre afin de pouvoir déposer un commentaire

Créer un compte

Créez un compte sur notre communauté. C’est facile !

Créer un nouveau compte

Se connecter

Vous avez déjà un compte ? Connectez-vous ici.

Connectez-vous maintenant
  • En ligne récemment   0 membre est en ligne

    • Aucun utilisateur enregistré regarde cette page.
×
×
  • Créer...