KIRIKOU13 Posté(e) 1 novembre 2007 Posté(e) 1 novembre 2007 Bonjour, Je ne comprends pas les preuves de critères de divisibilité par 9 ou 11 par exemple en prenant MCDU. Si quelqu'un a un cheminement simple et explicite ? Par exemple pour la divibilité par 4 n = mcdu = 10² (10m +c) + d.10 + u n = 10² (10m +c) + du ( où est passé le 10 de d ? mais c'est peut être pas important) or 10² = 100 est un multiple de 4 donc il faut "du" le soit aussi ! mais alors pour 11 et 9 ? A bientôt
cecilou80m Posté(e) 2 novembre 2007 Posté(e) 2 novembre 2007 Pour la divisibilité par 9: n = M * 1000 + C *100 + D*10 + U n = (999M + M) + (99C + C ) + (9D + D) + U n= (999M+99C+9D) +M+C+D+U n = 9 (111M + 11 C +D)+ M+C+D+U Or 9 (111M + 11 C +D) est divisible par 9 Donc pour que n soit divisible par 9, M+C+D+U devra être divisible par 9. n = 10² (10m +c) + du ( où est passé le 10 de d ? mais c'est peut être pas important) Il n'y a pas un trait sur "du"? dans ce cas, la position du chiffre, 10*d est implicite.
KIRIKOU13 Posté(e) 2 novembre 2007 Auteur Posté(e) 2 novembre 2007 Bonsoir, et merci pour ton aide oui sur du , il y a un trait. Par contre pour le second calcul, je ne comprend pas comment on calcule , comment ont part de ce 999 + 1 ?
Nävis Posté(e) 2 novembre 2007 Posté(e) 2 novembre 2007 Par contre pour le second calcul, je ne comprend pas comment on calcule , comment ont part de ce 999 + 1 ? Tu cherches à faire apparaitre 9 en facteur commun, donc si tu décompose 1000 en 999+1, tu peux . Ce genre d'exo est un classique du crpe !
kinette Posté(e) 2 novembre 2007 Posté(e) 2 novembre 2007 Par contre pour le second calcul, je ne comprend pas comment on calcule , comment ont part de ce 999 + 1 ? Tu cherches à faire apparaitre 9 en facteur commun, donc si tu décompose 1000 en 999+1, tu peux . Ce genre d'exo est un classique du crpe ! Pour moi c'est du chinois
KIRIKOU13 Posté(e) 2 novembre 2007 Auteur Posté(e) 2 novembre 2007 Par contre pour le second calcul, je ne comprend pas comment on calcule , comment ont part de ce 999 + 1 ? Tu cherches à faire apparaitre 9 en facteur commun, donc si tu décompose 1000 en 999+1, tu peux . Ce genre d'exo est un classique du crpe ! Oui c'est pour ça que ça me travaille :P Je vais reprendre vos infos pour essayer de comprendre, mais pas ce soir.. A +
Nävis Posté(e) 2 novembre 2007 Posté(e) 2 novembre 2007 Par contre pour le second calcul, je ne comprend pas comment on calcule , comment ont part de ce 999 + 1 ? Tu cherches à faire apparaitre 9 en facteur commun, donc si tu décompose 1000 en 999+1, tu peux . Ce genre d'exo est un classique du crpe ! Pour moi c'est du chinois N divisible par 9 s'écrit aussi N=9 * n Il faut donc chercher à trouver des 9 dans l'expression de N. Si on écrit M le chiffre des milliers, C celui des centaines, D celui des dizaines, et U celui des unités, N = M * 1000 + C *100 + D*10 + U là on cherche à faire "sortir un 9", donc 1000=999+1 , 100=99+1; 10=9+1 et tu retombes sur les équations de Cécilou. PS : si tu voulais un critère de divisibilté par 7, tu aurais mis 10=7+3 etc...
Carole06 Posté(e) 14 février 2008 Posté(e) 14 février 2008 PS : si tu voulais un critère de divisibilté par 7, tu aurais mis 10=7+3 etc... mais ça donnerait alors: n = M * 1000 + C *100 + D*10 + U n = (777M + 333M) + (77C + 33C ) + (7D + 3D) + U n= (777M+77C+7D) +333M+33C+3D+U n = 7 (111M + 11 C +D)+ 333M+33C+3D+U je ne vois absolument pas ce que ça prouve, ça...
Dominique Posté(e) 14 février 2008 Posté(e) 14 février 2008 mais ça donnerait alors:n = M * 1000 + C *100 + D*10 + U n = (777M + 333M) + (77C + 33C ) + (7D + 3D) + U n = (777M + 223M) + (77C + 23C ) + (7D + 3D) + U je ne vois absolument pas ce que ça prouve, ça... Çà n'amène effectivement pas, a priori, à quelque chose d'intéressant. Il existe des critères de divisibilité par 7 mais pas simples à utiliser. On ne les connaît pas par cœur et il n'est pas facile de les faire apparaître en faisant des calculs du genre de ceux dont on il a été question dans ce fil de discussion.
Messages recommandés
Créer un compte ou se connecter pour commenter
Vous devez être membre afin de pouvoir déposer un commentaire
Créer un compte
Créez un compte sur notre communauté. C’est facile !
Créer un nouveau compteSe connecter
Vous avez déjà un compte ? Connectez-vous ici.
Connectez-vous maintenant