Jump to content

Recommended Posts

Posted

salut,

je ne comprends pas le déroulement d'une équation.

La voici:

t x 1000/36 = t x 750/36 + 50

t x 1000 = t x 750 + 36 x 50 J'ai compris que le 36 qui était en dessous de 1000 est allé de l'autre côté mais je ne comprends pas pourquoi le 36 en dessous de 750

a disparu. Normalement c'est les deux 36 qui s'annulent non? Et du coup il n'y a plus de 36, non? :blink:

voici la suite:

t x 250 = 36 x 50

t = 7.2

Pouvez vous m'expliquer ce problème de 36 s'il vous plait?

Merci :smile:

Posted

Je vais te montrer une méthode qui me semble plus simple puis après je regarderais pourquoi ils font ça, mais en tout les cas je trouve le même résultat :

t x 1000/36 = t x 750/36 + 50

t x 1000/36 - t x 750/36 = 50 je passe tous les "t" du même côté

t x (1000/36-750/36) = 50 je factorise

t x 250/36 = 50

t = 50 x 36/250

t = (50x36)/(5x50) je simplifie

t = 36/5 j'utilise ma calculatrice ^^

t = 7.2

et l'explication pour le 36 dans la démonstration que tu donnes :

t x 1000/36 = t x 750/36 + 50

t x 1000 = (t x 750/36 + 50) x 36 il fait passer le 36 donc il multiplie l'ensemble par 36

t x 1000 = (36 x t x 750 / 36) + (50 x 36) là on peut barrer les 36

...

j'espère que c'est assez clair ...

Posted

Je vais te montrer une méthode qui me semble plus simple puis après je regarderais pourquoi ils font ça, mais en tout les cas je trouve le même résultat :

t x 1000/36 = t x 750/36 + 50

t x 1000/36 - t x 750/36 = 50 je passe tous les "t" du même côté

t x (1000/36-750/36) = 50 je factorise

t x 250/36 = 50

t = 50 x 36/250

t = (50x36)/(5x50) je simplifie

t = 36/5 j'utilise ma calculatrice ^^

t = 7.2

Ah oui là j'ai tout compris!! Je suis bête je n'y ai pas pensé! J'étais tellement obsédée par la façon qu'ils ont donné dans le corrigé que je n'ai pas essayé autrement!

et l'explication pour le 36 dans la démonstration que tu donnes :

t x 1000/36 = t x 750/36 + 50

t x 1000 = (t x 750/36 + 50) x 36 il fait passer le 36 donc il multiplie l'ensemble par 36

t x 1000 = (36 x t x 750 / 36) + (50 x 36) là on peut barrer les 36

...

donc là ça fait:

1000t = 36t x 750/36 + 1800

1000t = 750 + 1800

t = 750 + 1800/1000

ben je trouve pas 7.2!!!! A l'aide!!!

j'espère que c'est assez clair ...

Posted

Jongleuse a été plus rapide... ou alors :

t x 1000/36 = t x 750/36 + 50

Je place tout sous le même dénominateur, ici, afin de pouvoir effectuer l'opération :

ici, seul le 50 n'a pas 36 comme diviseur donc je fais 50x36/36

t x 1000 /36 = t x 750/36 + (50 x 36)/36 comme ils ont tous le même dénominateur je peux simplifier donc

t x 1000 = 750 x t + (50 x 36) et là tu retombes sur les calculs précédents.

1000t-750t = 1800

250t = 1800

t=1800/250

t=7.2

Juju, tu as oublié t variable t ici : 1000t = 750t + 1800

Posted

et l'explication pour le 36 dans la démonstration que tu donnes :

t x 1000/36 = t x 750/36 + 50

t x 1000 = (t x 750/36 + 50) x 36 il fait passer le 36 donc il multiplie l'ensemble par 36

t x 1000 = (36 x t x 750 / 36) + (50 x 36) là on peut barrer les 36

...

donc là ça fait:

1000t = 36t x 750/36 + 1800 ........ oui mais faut pas supprimer le t ^^

1000t = 750t + 1800 .....

t = 750 + 1800/1000... du coup ça c'est faux : 1000t - 750t = 1800

ce qui fait 250t = 1800 et donc t = 1800/250

ben je trouve pas 7.5!!!! A l'aide!!! d'où t = 7.2 :smile:

Posted

Xtelle oui on peut aussi mettre tout sur le même denominateur. Tu as été plus rapide pour la correction ^^

Juju faut que tu trouves ta méthode, ce qui est le plus clair pour toi...

Posted

ok!!! super!! J'ai tout compris!! Merci à vous 2!! :smile:

En tout cas, oui, je n'utiliserai pas cette méthode qu'ils proposent dans le corrigé!

Vos 2 autres méthodes sont plus claires pour moi!

Et je crois que le fait qu'ils écrivent "t x 750" par ex, m'a perturbé! Je préfère écrire "750t" :blush:

Je vais continuer à m'entrainer!

Merci!! :smile:

Bon courage pour le concours! :D

Posted

Jongleuse222 as-tu trouvé le 7.2 !! Je te garantie que 1800/250=7.2 et non 7.5 !!!

D'ailleurs, le résultat exact est 36/5 et non 7.2 !!! Pensez à réduire les fractions au maximum (j'aurais dû écrire à les rendre irréductible) et à donner le résultat sous cette forme sauf si l'on vous demande un résultat décimal ou à x près.

Posted

Oui oui, c'est bien 7.2 et non 7.5! C'est moi qui me suis trompée en tapant le résultat.

C'est 7.2 secondes en fait. C'est une histoire de guépard et d'antilope qui vont se rattraper.

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
  • Recently Browsing   0 members

    • No registered users viewing this page.
×
×
  • Create New...