Aller au contenu

5,9999999999999999 ... est-il égal à 6 ????


Messages recommandés

Posté(e)

Pourquoi après mon explication, pensiez vous qu'il y avait un truc?

Je reprends mon explication:

Si on prend y=0,9999....

10y=9,99999...

10y-y= 9 C'est égal à 9 car on parle bien d'un suite illimitée de 9 et non d'une approximation!

9y=9

y=1

Et donc comme le dit MAF c'est la technnique de faire disparaitre la partie décimale. C'est valable pour une suite illimitée de 9 uniquement!

Et je tire cette explication du livre Hatier de préparation au concours si certains ne veulent pas croire cette façon de voir :wink:

  • Réponses 50
  • Created
  • Dernière réponse

Membres les plus actifs

  • dhaiphi

    10

  • Kokoyaya

    8

  • Zarko

    5

  • Doro59

    4

Membres les plus actifs

Posté(e)

Vi mais si les décimales sont infinies, c'est une approximation donc tu ne peux pas te permettre de dire "égal".

Posté(e)
Oui, sauf que ça ne marche pas.

:heat:

Posté(e)

Pensez à faire des recherches avant de poser vos questions car celle-ci a été traité l'an dernier justement, Dominique avez apporté des explications et des exemples. Alors à vos claviers...

Posté(e)
10y=9,99999...

10y-y= 9 C'est égal à 9 car on parle bien d'un suite illimitée de 9 et non d'une approximation!

Et comment fait-on pour calculer 9,99999999999999 - 0,9999999999999 ? (il faudrait dans le deuxième nombre un nombre illimité de décimales + 1 pour éliminer toutes les décimales).

À partir du moment où le nombre de décimales est illimité, on n'a pas un nombre exact et c'est donc par définition une approximation, non ?

Posté(e)

Tu as décidé de refaire les maths Kokoyaya! :blink:

Le développement décimal de l'unité ou paradoxe de l'égalité entre 0,9999... et 1 est une curiosité mathématique qualifiée de paradoxe en raison de son caractère contre-intuitif. Il correspond à l'égalité entre les deux écritures du développement décimal de l'unité :

Voir article wikipédia A lire!

Posté(e)
Tu as décidé de refaire les maths Kokoyaya! :blink:

Nan, je cherche à saisir où est la faille de mon raisonnement et tu viens de me la faire comprendre, merci à toi :)

Posté(e)
Tu as décidé de refaire les maths Kokoyaya! :blink:

Nan, je cherche à saisir où est la faille de mon raisonnement et tu viens de me la faire comprendre, merci à toi :)

De rien! En plus j'ai tout à fait compris ton raisonnement :bleh: Mais comme wikipédia l'explique c'est un paradoxe!

Posté(e)

Je n'aime pas les paradoxes. :mad::lol:

Posté(e)

Je pense que l'on peut néanmoins dire que 0,999 ... = 1 , car les trois petits points après les 999 représentent une suite de 9 à l'infini. Cela signifie que le nombre 0,999 ... a une valeur "indéterminée" (il doit y avoir de meilleurs termes), c'est donc plus de l'ordre du concept.

Ce concept est aussi en rapport avec la vision de notre monde comme un espace divisible à l'infini et donc les fractions et toutes les bizarreries que cela peut provoquer.

Par exemple : Achille et la tortue.

Notions associées :

L'infini, le zéro et les limites.

Je ne suis pas très bon en explication, j'espère ne pas avoir dit trop de bêtises.

Posté(e)
Euh, ce n'est pas la découverte du siècle...C'est au programme du collège....et ça marche si les décimales sont infinies :wink:

ben justement, du collège à partir de quelle année ? moi le collège c'était avant 1986 ... et j'avais jamais entendu parler de ça (ni au lycée d'ailleurs)

mais j'ai trouvé sur le net des explications, c'est effectivement une égalité (dans le cas où les 9 sont à l'infini après la virgule)

Posté(e)
ben justement, du collège à partir de quelle année ? moi le collège c'était avant 1986 ... et j'avais jamais entendu parler de ça (ni au lycée d'ailleurs)

Je crains en effet que les élèves du collège soient quelque peu hermétiques à ce genre d'argutie.

Créer un compte ou se connecter pour commenter

Vous devez être membre afin de pouvoir déposer un commentaire

Créer un compte

Créez un compte sur notre communauté. C’est facile !

Créer un nouveau compte

Se connecter

Vous avez déjà un compte ? Connectez-vous ici.

Connectez-vous maintenant
  • En ligne récemment   0 membre est en ligne

    • Aucun utilisateur enregistré regarde cette page.

×
×
  • Créer...