amelaib Posté(e) 25 mars 2006 Posté(e) 25 mars 2006 Bonjour !J'ai passé le test ce matin à Nantes. J'ai un doute sur une question... Une barrique contenait 225Litres. On a vidé 2/3 de son contenu. Combien de bouteilles de 3/4 de litre peut-on remplir avec le liquide restant dans la barrique ? A : 40 B : 100 C : 200 D : 20 E : 50 J'ai répondu 100 mais ne fallait-il pas aussi répondre, 40, 20 et 50 ?? puisque quand on peut le plus on peut le moins...Qu'en pensez-vous ? 100 me parait etre la bonne réponse, et je ne pense pas qu'il fallait répondre aussi 20, 40 et50...Je pense que la question induit "avec tout le liquide restant" , donc pas une goutte de plus ou de moins... Enfin, c mon avis ! Te prend pas le chou pour ça à mon avis !! lol
Dominique Posté(e) 25 mars 2006 Posté(e) 25 mars 2006 x, y et z sont des chiffresDéterminer sachant que : xxx + xxy + xzz = 2006 J'ai trouvé les bons chiffres mais ce qui compte beaucoup pour les exos c'est de bien expliciter le raisonnement et les méthodes de calcul. Exemple d'explication possible : L' équation s'écrit : 100x + 10x + x+ 100x + 10x + y + 100x + 10z + z = 2006 soit 321x + y +11z = 2006 (avec x, y et z entiers inférieurs ou égaux à 9 et x non nul) D'où 321 x = 2006 - y - 11z On sait que : 1898 2006 - y - 11z 2006 (car y et z valent au minimum 0 et au maximum 9) On doit donc avoir : 1898 321x 2006 La seule possibilité est x = 6. On en déduit que y +11z = 2006 - 321 × 6 = 80 et donc que y = 80 - 11 × z. La seule possibilité est z = 7 et y = 3. Vérification : 666 + 663 + 677 = 2006.
amelaib Posté(e) 25 mars 2006 Posté(e) 25 mars 2006 x, y et z sont des chiffres Déterminer sachant que : xxx + xxy + xzz = 2006 J'ai trouvé les bons chiffres mais ce qui compte beaucoup pour les exos c'est de bien expliciter le raisonnement et les méthodes de calcul. Exemple d'explication possible : L' équation s'écrit : 100x + 10x + x+ 100x + 10x + y + 100x + 10z + z = 2006 soit 321x + y +11z = 2006 (avec x, y et z entiers inférieurs ou égaux à 9 et x non nul) D'où 321 x = 2006 - y - 11z On sait que : 1898 2006 - y - 11z 2006 (car y et z valent au minimum 0 et au maximum 9) On doit donc avoir : 1898 321x 2006 La seule possibilité est x = 6. On en déduit que y +11z = 2006 - 321 × 6 = 80 et donc que y = 80 - 11 × z. La seule possibilités est z = 7 et y = 3. Vérification : 666 + 663 + 677 = 2006. Ah oui, zut...cette méthode est bien mieux que la mienne !! Les correcteurs auraient plus apprécié une solution algébrique comme la tienne, plutôt que la méthode "à tâtons" que j'ai utilisé...m'enfin...merci de m'avoir éclairer là-dessus...t'es un ange !! Bises
Blachou Posté(e) 25 mars 2006 Posté(e) 25 mars 2006 Salut bachou tu le passe où le test d'entrée? Vesoul (académie de Besançon donc)
Carinel Posté(e) 26 mars 2006 Posté(e) 26 mars 2006 Voici une question sur laquelle j'ai un doute La trigonométrie dans un triangle rectangle permet de calculer: A- une longueur si on connaît la longueur des deux autres côtés B- une longueur si on connaît la longueur d'un côté et la mesure d'un angle C- la mesure d'un angle si on connaît la longueur de deux cotés D- la mesure d'un angle si on connaît la longueur d'un coté et un autre angle E- la mesure d'un angle si on connaît les deux autres angles Je pense que la B et la C sont justes mais j'hésite pour la E:est-ce que "la somme des angles d'un triangle vaut 180°" fait parti de la trigonométrie?
Dominique Posté(e) 26 mars 2006 Posté(e) 26 mars 2006 est-ce que "la somme des angles d'un triangle vaut 180°" fait parti de la trigonométrie? Pour ma part, je répondrais non.
Mina_106 Posté(e) 27 mars 2006 Posté(e) 27 mars 2006 alors pour la distance parcourue je dirai : 54 km............ pour la vitesse, 24 km/h.................. c'est ce que tu as trouvé ?? j'espère te rassurer!!! Oui,oui, tu me rassure...c'est pas compliqué du tout, mais cette fille était tellement sûre d'elle, que du coup, moi j'ai douté !! merci merci ! Et vous autres...vous trouvez bien 54 km et 24 km/h ???Je suis pas folle, hein ??!! Merci Je trouve comme toi ;-) Ou alors on est tous fous...
Mina_106 Posté(e) 27 mars 2006 Posté(e) 27 mars 2006 Bonjour ! J'ai passé le test ce matin à Nantes. J'ai un doute sur une question... Une barrique contenait 225Litres. On a vidé 2/3 de son contenu. Combien de bouteilles de 3/4 de litre peut-on remplir avec le liquide restant dans la barrique ? A : 40 B : 100 C : 200 D : 20 E : 50 J'ai répondu 100 mais ne fallait-il pas aussi répondre, 40, 20 et 50 ?? puisque quand on peut le plus on peut le moins...Qu'en pensez-vous ? 100 me parait etre la bonne réponse, et je ne pense pas qu'il fallait répondre aussi 20, 40 et50...Je pense que la question induit "avec tout le liquide restant" , donc pas une goutte de plus ou de moins... Enfin, c mon avis ! Te prend pas le chou pour ça à mon avis !! lol J'aurais dit 100 moi aussi. Mais c'est vrai qu'il y a tellement de pièges dans ces QCm qu'on voit le mal partout. Ils ne vous disent pas le nombre de réponses attendues?
Carinel Posté(e) 27 mars 2006 Posté(e) 27 mars 2006 Si les longueurs des côtés d'un rectangle augmentent de 20%, son aire augmente de: A- 14% B- 20% C- 40% D- 44% E- 400% est-ce que c'est seulement les longueurs qui augmentent de 20% ou c'est les longueurs et les largeurs qui augmentent de 20%?
Dominique Posté(e) 27 mars 2006 Posté(e) 27 mars 2006 Si les longueurs des côtés d'un rectangle augmentent de 20%, son aire augmente de:A- 14% B- 20% C- 40% D- 44% E- 400% est-ce que c'est seulement les longueurs qui augmentent de 20% ou c'est les longueurs et les largeurs qui augmentent de 20%? Si seules les longueurs du rectangle augmentent de 20 %, l'aire augmente de 20%. Si les longueurs et les largeurs augmentent de 20 %, l'aire augmente de 44 %. Pour ma part, la phrase "les longueurs des côtés d'un rectangle augmentent de 20%" signifie que les longueurs et les largeurs augmentent de 20 %. S'il était écrit "les longueurs d'un rectangle augmentent de 20 %" ce serait différent et ça signifierait, pour moi, que seules les longueurs augmentent de 20 %.
Carinel Posté(e) 28 mars 2006 Posté(e) 28 mars 2006 merci Dominique j'en ai encore une autre: La proportionnalité peut être modélisée par une fonction: A- affine B- linéaire C- du second degré D- exponentielle E- elle ne se modélise pas Je pense que la B est juste mais j'hésite pour la A
Dominique Posté(e) 28 mars 2006 Posté(e) 28 mars 2006 merci Dominiquej'en ai encore une autre: La proportionnalité peut être modélisée par une fonction: A- affine B- linéaire C- du second degré D- exponentielle E- elle ne se modélise pas Je pense que la B est juste mais j'hésite pour la A Seule la réponse B est exacte. Si on passe de x à y par une fonction affine, on a y = ax + b et (sauf dans la cas où b = 0 qui correspond au cas de la fonction linéaire, cas particulier de fonction affine), y n'est pas proportionnel à x (y n'est proportionnel à x que dans le cas où y = ax).
Messages recommandés
Créer un compte ou se connecter pour commenter
Vous devez être membre afin de pouvoir déposer un commentaire
Créer un compte
Créez un compte sur notre communauté. C’est facile !
Créer un nouveau compteSe connecter
Vous avez déjà un compte ? Connectez-vous ici.
Connectez-vous maintenant