Aller au contenu

Messages recommandés

Posté(e)

Oui mais Thalès, ça dit : HC/CG = CF/CD non ?

Posté(e)

c'est valable aussi pour ce que j'aai mis. mais bon, je me trompe peut être ça fait qd même.................28 ans que je n'ai pas fait ça :D

il faudrait que dominique revienne sur le forum ;)

Posté(e)

gloups :o ça fait ..38 ans!!!

bon en fait je crois qu'il faut passer par le corollaire de la droite des milieux:

une droite qui passe par le milieu d'un coté et est // à un autre coté coupe le 3e coté en son milieu. donc CH=HG idem pour le triangle ABH on a AG=HG

AG=GH=HC

Posté(e)

Ok là je suis d'accord ! :)

En fait ce corrolaire n'est qu'une conséquence du théorème de thalès :

CF/CD = CH/CG.

Or comme F est le milieu de [DC] : CF/CD = 1/2

D'où CH = 1/2 CH et donc H est le milieu de [CG] ! :D

Posté(e)

c'est donc ce que j'ai mis non?

Posté(e)

Bonjour,

Voir en fichier joint (fichier pdf de 80 Ko) des précisions concernant le théorème de Thalès.

Cordialement

thales.pdf

Posté(e)

Bonjour,

Je propose la démonstration suivante :

Remarque préalable : BLA nous dit qu'on sait que les droites (DE) et (FB) sont parallèles. S'il fallait le démontrer, on pourrait écrire :

ABCD est un parallélogramme donc (AB) est parallèle à (DC) et donc (EB) est parallèle à (DF). Par ailleurs, EB = DF (car E est le milieu de [AB] et F est le milieu de [CD] et car AB = DC ).

Comme (EB) est parallèle à (DF) avec EB = DF, on peut en déduire que EBFD est un parallélogramme.

Comme EBFD est un parallélogramme, alors (ED) est parallèle à (BF).

1°) Comme (ED) est parallèle à (DF), on peut utiliser deux fois le théorème de Thalès et écrire que d'une part CH/HG = CF/FD et que d'autre part AG/GH = AE/EB.

Comme CF/FD = 1 et AE/EB = 1, on en déduit que CH/HG = 1 et AG/GH = 1 et donc CH = HG = GA.

2°) Si on appelle d la distance entre les droites parallèles (AB) et (CD) l'aire du parallélogramme ABCD vaut AB × d et l'aire du parallélogramme EBFD vaut

EB × d. Comme EB vaut la moitié de AB, l'aire du parallélogramme EBFD vaut la moitié de l'aire du parallélogramme ABCD.

Posté(e)

Comme quoi, je n'ai pas encore apprivoisé ce cher Thalès cryin

Je me doutais bien qu'il était dans le coup, mais je n'ai pas trouvé la solution <_<

Créer un compte ou se connecter pour commenter

Vous devez être membre afin de pouvoir déposer un commentaire

Créer un compte

Créez un compte sur notre communauté. C’est facile !

Créer un nouveau compte

Se connecter

Vous avez déjà un compte ? Connectez-vous ici.

Connectez-vous maintenant
  • En ligne récemment   0 membre est en ligne

    • Aucun utilisateur enregistré regarde cette page.
×
×
  • Créer...